DMX- 9 Channel LED Driver

Overview

The DMX- 9 Channel LED driver board allows up to 9 LED Arrays or 3 RGB Strips to be driven and controlled directly from a DMX512 network. The board provides 9 output channels of PWM running at 2 kHz . The base address may be set anywhere between 1 and 503 .

Option 1: $9 \times$ LED arrays or $3 \times$ RGB strips.

Connections:

DMX: Dual 5 Pin XLR and 2×3-pin terminal connections $1 / G=$ Cable Screen, $2 / 2=$ Data - , 3/3 = Data + .
Power: terminal connections 0V/ GND \& V+ (9-15Vdc) Standard Board power requirements are $9-15 \mathrm{~V}$ DC at 0.5 Amps + LED's load current: Maximum 9 amps if using terminal connectors as Figure 1 (18 amps if wired as Figure 2)

LED Array/ RGB Outputs: 9 +/- PWM outputs @ 1 Amp per channel via screw terminals (2 amps per channel @ 15 Vdc if wired as Figure 2)

LED PWM/ RCD 24 mode:

The value on the base address channel controls the PWM drive on output 1 a DMX value of 0 will switch the load OFF and a value of 255 will switch the load ON. 128 will generate a 50% duty PWM signal running at 2 kHz . The resolution of the PWM stream is 8 -bit. The value on the base address controls output 1, Base address +1 controls output 2 etc. The PWM signal is set to OFF when a valid DMX signal is not being received.

Base Address Selection:

The base address may be set between 1 and 503 using the DIP switches. Calculate the setting by adding the value of the switches that are set to the ON position. The Base Address is continuously read, No address selected (address = 000, defaults to address 001).

Outputs:

The 9 output channels are rated at 2 Amps Maximum (18 amps total) @ 9-15 VDC if wired as Figure 2 and are arranged as open collector outputs. LED arrays should be wired as Arrays option (Figure 1 or 2) RGB LED's should be common anode format wired to the " + " input and the cathodes to the relevant "-" input on the board RGB option (Figure 1 or 2). N.B. All LED Arrays / RGB strips must include suitable current limiting resistors, Max 1 Amp per channel @ 9-15Vdc, if Arrays/RGB strips require 2 Amps per channel connect as Figure 2.

Indicators:

Power LED solid red LED when power applied.
DMX Status LED when a valid DMX signal being received- solid red LED. No DMX signal, flashing red LED.

DMX- 9 Channel LED Driver

DMX- 9 Channel LED Driver

DMX- 9 Channel LED Driver

DMX- 9 Channel LED Driver

LED Connection Overview

Figure - 1

Each Resistor is calculated on Power Supply / LED Operating Voltage and Current / Resistance needed
(See chart on calculating resistors needed)

DMX- 9 Channel LED Driver

LED Array Option

Figure - 1a

Note: It takes around 33 LED bars at 30 mA each to equal 1 Amp $30 \mathrm{~mA}=0.030$ Amps $33 \times 0.030 \mathrm{~A}=0.99 \mathrm{Amps}+/-$ 12 VDC

DMX- 9 Channel LED Driver

LED Connection Overview
 Figure - 1b

RGB Option

Figure - 1c

RGB LED Option

Common Anode

 1 = RED LED$2=$ Common Positive 3 = Blue LED 4 = Green LED

Max 1 Amp per channel at 12 Vdc

Note: Each Resistor is based on the RGB specifications. Check with manufacture for resistor values needed.

DMX- 9 Channel LED Driver

LED Connection Overview

LED Array Option

DMX- 9 Channel LED Driver

LED Connection
MAX LED Load = 9 Amps total per Driver Board

LED Connection
Overview

RGB Option
 12- VDC RGB-LED-Light Bars
 Common Anode
 RGB Strip X 3

* NOTE

MAX LED Load = 18 Amps total per Driver Board

Board Address DMX - Values

NOTE: Address=000 defaults to Address 001

DMX Value 0 = Load OFF
DMX Value 255 = Load Full ON
DMX Value 128 = generate a 50% duty PWM signal running at 2 kHZ / 8Bit PWM stream
DMX Value 1-254 - Various PWM Levels (LED Intensity)

Setting the base address of LED Channel Outputs

Add the value of the address DIP switches set to the ON position to calculate the base address.
Example: DIP switches 5 and 6 set to $\mathbf{O N}$ position, the base address is now 48 , (16+32) this setting is used to determine the starting address output of Channel-1, the next Channel would be address 49 for Channel-2, and the next 50 for Channel-3, 51 for Channel-4, 52 for Channel-5, etc.

LED Arrays

Sending a DMX Value of 0 will turn OFF the LED's.
A value of 255 will turn ON the LED's.
A value of 128 will set the LED to 50% level (PWM Signal)
A value between 1 and 254 will set various LED Dimming levels (PWM Signal)

RGB LED's

Sending a DMX Value of 0 will turn OFF the RGB LED's.
A value of 255 will turn ON the RGB LED's.
Setting a value between 1 and 254 will set the various RGB LED Color levels (PWM Signal)

$$
\begin{aligned}
\text { RGB LED Example: } & \text { RGB LED Connection to DMX LED } 9 \text { Driver Board } \\
\text { RGB LED } & \text { R LED Lead (1) is connected to CH } 3-\text { Negative Wire Terminal (}- \text {) } \\
\mathbf{4} \text { Leads } & \text { G LED Lead (3) is connected to CH } 2-\text { Negative Wire Terminal (}- \text {) } \\
& \text { + Common Anode Lead (2) is connected to CH 1- Positive Wire Terminal (+) }
\end{aligned}
$$

Control: Ch3- ON = RED
Ch2- ON = BLUE
Ch1- ON = GREEN
Setting a value between 1 and 254 on each channel $3,2,1$ will set the various RGB LED Color levels

DMX- 9 Channel LED Driver
\qquad
DMX LED-9 BOARD Application: \qquad

DMX- 9 Channel LED Driver RED-GREEN-BLUE LED Strip Lighting Method

HINT: You can create RGB lighting effects by using strips of Single Color LED and

:.....................
 turn each one of them ON and OFF in RGB numerical equivalent color patterns to generate the various different colors.

RGB LED

- OR -

Single Color Light Bars

DMX- 9 Channel LED Driver RED-GREEN-BLUE LED Strip Lighting Method

DMX- 9 Channel LED Driver

T) RGB Numerical Equivalents

RGB Color Values

COLOR	RED Value	GREEN Value	BLUE Value
RED	255	0	0
Green	0	255	0
Blue	0	0	255
Y'ellow	255	255	0
Cyan	0	255	255
Magenta	255	0	255
Orange	255	128	0
Yellow-Green	128	255	0
Cyan-Green	0	255	128
Cyan-Blue	0	128	255
Blue-Magenta	128	0	255
Red-Magenta	255	0	128

My Favorite Colors

COLOR	RED Value	Green value	BLUE Value
RGB Color Values RED-GREEN-BLUE 255-255-255		$\begin{gathered} 0=\text { OFF } \\ 255=\text { ON FULL } \end{gathered}$	
		128= 50\% Dim	

DMX- 9 Channel LED Driver

RGB Numerical Equivalents

NOTE:
Printer Page Not Actual
Colors +/- 10\% Shift
$0=$ OFF
$255=$ ON FULL
$128=50 \%$ Dim

RGB Color Values
RED-GREEN-BLUE 255255255

5 mm - RGB LED on quick wire adapter with current limiting resistors on board. Adapter is set up for 9-12 Vdc Input.
(Red- Resistor 220 Ohm at 9-12 VDC power supply
Green / Blue- Resistor 330 Ohm at 9-12 VDC power supply
RGB LED (4 lead wires from LED)
Common Anode (Positive) configuration
Emits: Red-Green-Blue Light - Defused Lens for even coloration

Color	VDC	mA	View Angle	MCD	Wavelength:
RED	2.0	50 mA	60 Deg	565	
GREEN $=525 \mathrm{~nm}$					

Copyright © 2010 Blue Point Engineering, All Rights Reserved

RGB Eyeball Application

RIGHT

